

Barriers (1st Line of Defense):

- · Prevent microbes from entering body
- 1) Skin:
 - Inhospitable environment:
 - Dry, nutrient-free zone
 - Sweat/oil gland secretions (antibiotics)
 - Skin sloughed off

2) Mucous Membranes

(digestive, respiratory, urogenital tracts):

- Secrete mucus (traps microbes):
 Antibacterial enzymes
- Cilia sweep up mucus (swallowed)

- Attack wide variety of microbes that penetrate barriers
- 1) Phagocytic Cells (leukocytes):
 - Macrophages ("big eaters")
 Ingest microbes via phagocytosis
 - Natural Killer Cells
 Attack virus-infected / cancer cells

Non-specific Internal Defenses (2nd Line of Defense):

• Attack wide variety of microbes that penetrate barriers

2) Inflammation ("to set on fire")

- Wounded region $\,\rightarrow\,$ red, swollen and warm:
 - Damaged cells 1) release histamine ('leaky vessels')
 - 2) initiate blood clotting
 - 3) attract macrophages (Clean area)
- 3) Fever (↑ body temperature)
 - Combats large-scale infections (turn up thermostat hypothalamus)
 - Function: 1) increases macrophage activity
 - 2) slows bacterial reproduction
 - Increases macrophage activity

Normal Fever: 98.6 F

Hyperpyrexia: >106 F *Medical emergency

Children: Febrile seizures can occur at 102 F or higher

Specific Immune Response (3nd Line of Defense):

- Complex attack against specific target (organism / toxin)
- Immune System: Cells / molecules that work together to combat the microbial invasion
- Key Players (leukocytes : lymphocytes):
 - B cells = Mark / inactivate foreign invaders in blood
 - T cells = Destroy foreign invaders in cells
 - Table 36-1 (Overview of cell types...)

Fundamental Steps in Immune Response:

- 1) Immune system must recognize invader...
 - Antigen: Molecule located on cell surface which triggers an immune response.
 - · B cells produce antibodies which recognize antigens

Fundamental Steps of Immune Response:

- 1) Immune system must recognize invader...
 - Antigen: Molecule located on cell surface which triggers an immune response.
 - B cells produce antibodies which recognize antigens
 Antibodies may bind to B cell or may float freely

Fundamental Steps of Immune Response:

- 1) Immune system must recognize invader...
 - Antigen: Molecule located on cell surface which triggers an immune response.
 - B cells produce antibodies which recognize antigens
 - T cells produce T-cell Receptors which recognize antigens

Why doesn't our immune system destroy our own cells?

Answer: Major Histocompatibility Complex (MHC):

- Unique set of proteins / polysaccharides which identify "self" cells of body
- Act as antigens in other individual's bodies

Fundamental Steps in Immune Response:

- 2) Immune system must launch attack ...
- A) Humoral Immunity (B cells / circulating antibodies):
 - Attacks invaders (bacteria, protists, fungi) prior to cell entry
 - B cell antibody receptor binds antigen
 Activated B cell divides rapidly (clonal selection):
 - (a) Memory cells (Future immunity)
 - (b) Plasma cells: ↑ antibodies (released into blood)

Fundamental Steps in Immune Response:

- 2) Immune system must launch attack ...
- B) Cell-mediated Immunity (T cells):
 - · Attacks invaders (viruses, cancers) after they enter body cells (1) Cytotoxic T cells:
 - Release proteins \rightarrow disrupt plasma membrane
 - (2) Helper T cells:
 - · Stimulate immune cells (via hormones)
 - · Destroyed by AIDS virus
 - (3) Suppressor T cells:
 - · Activated following infection; shut down B / T cells
 - (4) Memory T cells:
 - · Protect body against future invasion

Fundamental Steps in Immune Response:

- 3) Immune system must remember past victories...
 - · Memory cells "remember" specific antigens · May survive for years
 - · Respond faster and larger to repeat invasion

Medical Care Augments Immune Response:

- 1) Antibiotics: Slow down microbial reproduction (not viruses) Problem: Antibiotic resistant strains
- 2) Vaccinations: Injection of killed microbes to confer immunity
 - · Stimulates development of memory cells

Are Vaccine dangerous?

- Yes, though side effects are uncommon *Allergic reactions, hypersensitivity to dead microbes
 - *Occasionally some people contract the disease *Especially when the vaccine uses live viruses
- 1998 paper linked MMR vaccines to autism
 - · Prompted numerous studies
 - · Investigative reporting revealed author was paid 400,000 pounds (~\$800,000)to find a vaccine link to autism.
- Current studies indicate no link from vaccines to autism

Anti-vaccination movement

- Since 1998, vaccinations fell 20 40% depending on country
 - Measles outbreaks since reduction in vaccines
 - > Netherlands (199-2000) 2961 cases
 - ≻UK & Ireland (2000) 300 cases
 - ≻ US (2005) 34 cases in Indiana.
 - > US (2009) 121 cases in 15 states so far.
- > Measles was eradicated in the US in 2000.

Malfunctions of Immune System:

- Allergies: Adverse reaction to harmless substances
 B cells recognize substance as antigen (histamine release)
 Anaphylactic Shock = can be fatal.
- 2) Autoimmune Disease: Body mistakes own cells as invaders
 > Diabetes mellitus (Type I): Destruction of pancreatic cells
 - Multiple Sclerosis: Destruction of neuron insulation (myelin)
- 3) Immunodeficiency Disease:
 - Severe Combined Immune Deficiency (SCID): ("Bubble Boy")
 - Aquired Immune Deficiency Syndrome (AIDS)
- 4) Cancer: Unchecked growth of tumor cells
 - · Cells evade / overwhelm immune system